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Abstract— The stress intensity factors for a thermal crack problem are computed directly from the
crack tip singular field as it was embedded in a specialized crack-tip element. The method gives
accurate results without modeling a very refined mesh near the crack tip and without evaluating
additional line and/or area integrals for the “modified” path independent integrals as suggested by
most current methods for thermoelastic cracks. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Airframe structures in High Speed Civil Transport (HSCT) are exposed to elevated tem-
peratures during their service life due to aerodynamic heating (see e.g. Bray and Starke,
1992). As a result, these structures are subjected to thermally induced stresses which in turn
may reduce their residual strength and their fatigue life. This is in contrast to conventional
aircraft fatigue analysis in which thermal stresses can be neglected due to the small thermal
variations,

Fatigue and fracture related predictions are normally based on a single or a few near
tip parameters, depending on the crack model employed. However, the stress intensity
factors (for small scale yielding) and the J-integral (for large scale yielding) in any cir-
cumstances are recognized as the most vital parameters for these predictions (see e.g. Paris
et al., 1961 ; Swedlow, 1965 ; Begley and Landes, 1972). Accurate estimates for fatigue life
and residual strength of structural components, therefore, require an accurate method to
compute these characterized fracture parameters. While the current methods for evaluating
K; and K;; of a thermoelastic crack are claimed to be accurate and mostly by way of finite
elements, they are neither efficient nor simple (see e.g. Wilson and Yu, 1979 ; Kishimoto et
al., 1980 ; Shih et /., 1986 ; Kuo and Riccardella, 1987). The first approach of these methods
is to reformulate a thermal stress crack problem in terms of a crack surface loading problem
by using the principle of linear superposition (see e.g. Wilson and Yu, 1979). The crack
surface loads must be determined from thermal stresses of an uncracked geometry under
the prescribed temperature field. It is obvious that this approach is not efficient since one
has to solve two separate (uncracked and cracked) problems. Further, the analysis for a
crack surface loading problem usually employs a finer mesh than that for a stress free crack
problem to enable to model the prescribed surface loads accurately. In the second approach
to the thermoelastic crack analysis, a (new) modified definition for J is proposed since the
original Rice J-integral is no longer path independent nor appropriate for thermal cracks
(see e.g. Wilson and Yu, 1979 ; Kishimoto et al., 1980 ; Shih et al., 1986 ; Kuo and Riccar-
della, 1987). These modified J either contain an additional area integral term beside the
usual line integral term (Wilson and Yu, 1979; Kishimoto et al., 1980) or are expressed
completely in terms of an area integral (Shih ez al., 1986). Since these methods involve an
area integration over an arbitrary domain enclosing the crack tip, they require necessarily
a highly accurate stress solution near the crack tip. These methods, therefore, degrade the
merit of the J-integral approach on taking advantage of the path independent property of
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J which can be calculated based on solutions far away from the singular crack tip. To
climinate the undesired area integration, Kuo and Riccardella (1987) suggested a new
modified J which involves only a path independent line integral. However, this definition
for J contains either a free expansion displacement field or a conjugate temperature field
which are the solutions of another (second) boundary-value problem. This method is,
therefore, also not efficient. In addition, other methods for computing energy release rates
and the stress intensity factors for elastostatic problem under general loading conditions
which include the body force have been proposed recently (see e.g. Raju and Shivakumar,
1990 ; Lee and Grosse, 1993, 1995). Since these latter methods include body forces, they
can also be applied to the thermo-elastic crack problems. However, the methods still require
evaluation of an area integral enclosing the crack tip when the prescribed body force is not
uniformly distributed. '

The objective of this paper is to present an alternate method for evaluating K and Ky,
which gives accurate and efficient results without performing the cumbersome line and/or
area integrations. This is possible because the crack tip singular behavior' is embedded in
a specialized crack tip element so that the crack tip region is accurately modeled and the
stress intensity factors (together with the nodal displacements) are determined directly from
the finite element analysis. The crack tip element is formulated based on hybrid assumed
stress approach first proposed by Pian (1964) and, Pian and Tong (1969) three decades
ago. This hybrid approach for linearly elastic crack was considered by Luk (1972). Even
though there is a potential application of the approach to other cracked problems such as
fully plastic and thermoelastic cracks, to our knowledge no one to date has considered such
applications. The evaluation of the J-integral for large scale yielding by a plastic crack tip
element has been addressed recently by the authors (Duong and Yu, 1996). Both theoretical
development as well as the numerical implementation for the approach are detailed there.
The reader who is unfamiliar with the hybrid crack tip element approach should refer to
that reference. The present work is the result of our current research at MDC on thermal-
mechanical fatigue crack growth. In the initial phase of the study, we limit our investigation
to the thermoelastic crack, and as the study progresses we would eventually include thermo-
plastic and visco-plastic cracks.

2. BASIC EQUATIONS OF THERMOELASTICITY

Within the framework of the uncoupled quasi static thermoelasticity theory, the gov-
erning equations for a 2-D domain without body force are (see e.g. Fung, 1965) :

6,;=0 (2.1)
ey = 1/2(u; ;+u;) (2.2)
0y = At b, +2Ge,;— pTo,, (2.3)
with the following boundary conditions
T,=T onS,, 2.4
u, =i onsS,, (2.5)

where 0, &; and v, are the stress tensor, strain tensor and displacement vector, respectively ;
4 and G are the Lamé constant and shear modulus; T is the relative temperature measured
from some reference stress free temperature; 7; is the traction vector; f = [xE/(1 —v*)]
with E being the Young modulus, « being the thermal coefficient of linear expansion, v* = v,.

' The asymptotic stress field for a thermoelastic crack had shown to be the same as that for a linearly elastic
crack (Sih, 1962). This, of course, can also be seen from the linear supposition of a surface loading crack problem
with the uncracked thermal stress problem as mentioned earlier for a thermal crack problem.
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the Poisson ratio, for plane stress and v* = 2v for plane strain. The temperature field I' is
determined separately from heat conduction analysis, and by assumption it is a prescribed
field for the present thermoelastic problem.

As is well known, the thermoelastic problem without body force can be reformulated
in terms of an “‘isothermal” problem with a prescribed (‘“‘thermally’’) body force by using
Duhamel-Newmann Analogy (see e.g. Fung, 1965). The stress solution of the problem
stated above (Problem I) can be expressed as

JI(ID = Uf}”—ﬂré,i, (26)

where ¢{" is the stress tensor of the following (isothermal) boundary value problem
(Problem 11):

ol +F, =0 2.7)
& = 12w ;+u;)) (2.8)
0, = Agyd,;+2Ge; 2.9)
F,= BT, (2.10)
subjected to
T = T,4BTn; onsS, 2.11)
u;,=#; onsS,. (2.12)

As mentioned earlier, since I’ is a prescribed temperature field, ¢{)’ is determined once ¢j"
of the equivalently isothermal problem is solved. Moreover, since I is usually prescribed
as a smooth function, I'd, contains no singularity and the stress intensity factors of
Problem I are the same as those of Problem I1.% It should be emphasized that since Problem
II is a standard, isothermal, linearly elastic boundary value problem with the body force
given by BT, the hybrid assumed stress approach can be applied directly to such problem
without any necessary modification for the governing variational principle employed by
the approach. For that reason, all developments below are for solving Problem II. For
simplicity, we drop the superscript (I1I) (to designate Problem II} in all notions for stresses
and traction in the next Subsections.

3. FINITE ELEMENT FORMULATION

An efficient way to solve the crack problem is to divide the domain into two subdomains
(see Fig. 1): the crack tip region (subdomain A) and the domain outside of the crack tip
region (subdomain B) ; each is formulated by a different finite element approach. The crack
tip region is modeled by the hybrid elements which contain the crack tip singular behavior.
On the other hand, the outside of the crack tip region is modelled by the regular (dis-
placement-based) elements. This mixed element type modeling is preferred over the same
(one) element type approach because the near tip behavior can be modeled accurately by
the hybrid elements while the far field region is adequately and cost efficiently represented
by the regular elements which do not require matrix inversion in their stiffness formation
as in that for the hybrid elements (see Section 3.2). This mixed modelling (for a problem
with a “‘thermally” body force) is compatible because one can pose Probiem II alternately

?In design practice, the heat transfer problem is normally solved separately first for the temperature dis-
tribution inside the structure. This analysis is carried out under the assumption of no crack inside the structure,
and it is followed by a thermo-elastic fracture analysis. Thus, the effect of the crack on the thermal flow has been
ignored in the present analysis.
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Fig. 1. Subdomains A and B of the Problem II (with “thermal” body force). S, is the common
boundary.

as: find stress and strain fields on each subdomain A and B which satisfy eqns (2.7)—(2.10)
with the following boundary conditions:

For subdomain A,

T,=T.+pCn, ons, 3.1
T,=Q;+pT'n, onsS, (3.2)
w, =14 onsS, 3.3)
For subdomain B,
T,=T,+pTn; onsS, (3.4)
T,= —Q;—pI'n, onsS, (3.5)
u; =i, onS§,, (3.6)

where S, is the common boundary of the two subdomains and Q;+ S1I'n, is the (unknown)
traction acting on S, with Q; being part of that traction vector,’ these two subproblems
clearly can be solved independently by a different finite element approach providing that
Q; is known. However, since Q; is unknown, one has to solve these two subproblems
simultaneously with the following compatibility condition:

u® =u® alongs.. 3.7

Since both assumed displacement and hybrid assumed stress approaches interpolate the
displacement on the element boundaries from the nodal displacements (see next sections),
condition (3.7) is identically satisfied as long as the discretized subdomains A and B have
the common nodes along S.. Further, as demonstrated in the next two Subsections, the
element force vector associated with the unknown traction Q; on S, for regular elements

*We express the unknown traction as Q7+ STz, so that it is similar to the conditions given on S, [see equation

2.11)].
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bordering S. is the same but opposite in sign with that for the neighboring hybrid elements
of the crack tip region on the other side of S,. Thus, the element force vectors associated
with @/ will cancel out with each other when the two subproblems are solved together
(simultaneously) with their domain having the common nodes along S,, so that no explicit
expression for Q7 is required. The above procedure is clearly equivalent to mixed element
type approach which deliberately uses different element types based on different finite
element formulation for different regions of the structure without formulating in terms of
two separate subproblems. Nevertheless, the above procedure is able not only to show the
compatibility of the mixed modeling approach rigorously but also to help us in retaining
or eliminating certain matrices from hybrid formulation consistently. The finite element
formulation for each subdomain is given in the next two sections.

3.1. Finite element formulation for the outer region

The outside of the crack tip region is modeled by the regular (displacement-based)
elements. The finite element equations are derived based on the principle of virtual dis-
placement.

f 0,06,dV — J BT du, dV+J (Q)+ BTn)ou,dS + f (T,+ BTn)ou,dS = 0. (3.8)
|4 14 S

S,

¢ o

Rewrite ST, du; of the second integral above as (8Tdw,),— fl'0u;,, and apply divergence
theorem for [, (fTdu,),dV results in

S,

Jo,,és,,-dVﬂ— f oo, dV+ J Q;du; dS+ f T.6u;dS, (3.9)
v 14 S, )

ol = pré,; (3.10)

d; is the Kronecker delta ; the relations fT0u,; = pI'du, 9, = 0.d¢,; and du; = 0 on S, have
been used in the derivation. Dividing the analyzed domain into n elements, assuming the
displacement field in each element to be a smooth function of its nodal displacements and
carrying out the minimization process with respect to the nodal displacement lead to the
following finite element equations

T g) = 3 (FO +FO+ F9). (3.11)
21 Q

K and F“ are the usual element stiffness matrix and the usual (mechanical) element force
vector. £ is the element force vector associated with traction Q; acting on S, ; it will be
cancelled out during the structure assemblage by a same vector but opposite in sign from
the neighboring hybrid elements but on the other side of S, as demonstrated later in the
next Subsection. I in the above equation is given by [, B"g" dV where B is the strain-
displacement matrix. Thus, for the present problem (with thermally body force), one must
include £ in addition to the usual stiffness matrix term and the usual (mechanical) load
vector.

3.2. Finite element formulation for the crack tip region
The crack tip region is modeled by the hybrid elements. The variation principle which
governs the assumed stress hybrid model is given as

NPED) ( j B(a ) dV—f T, dS+ J T, dS>, (3.12)
vV, av, Sa,,
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where :
B(o,;) = complementary elastic strain energy density Cyy, 6, 64:

a,; = stress tensor;
n = number of singular subelements associated with crack tip region;
u; = displacement components along boundaries;
T, = surface traction components;
T, = prescribed surface traction components over S, ;
V, = volume of subelement 7 ;

dV, = entire boundary of V,,;

S, = surface of V, over which the surface traction 7 are prescribed.

In this formulation, the assumed stress tensor g, must satisfy the nonhomogeneous equi-
librium equations

6+ P, =0. (3.13)

The assumed stress tensor is expressed as a sum of a function which satisfies the homo-
geneous equilibrium equation and the particular solution fI'd;. Because the asymptotic
stress near the crack tip is known, the homogeneous part of the assumed function for o, in
each subelement can be divided into two parts: one-part contains the regular stress
expression P and the other contains the special terms with proper stress singularity P,g,,
ie.,

¢ = PR+P.p+a, (3.14)
where Pf is generally a polynomial in spatial coordinates, which satisfies the equilibrium
equations ; fsgs contains the Williams asymptotic stress terms (Williams, 1957) ; g, is the
known particular solution fI'é,. The coefficient § is independent from subelement to
subelement while f, represents the intensity of singularity and is common to all subelements

in the crack tip element region. The surface tractions for each subelement are related to the
assumed stress distribution by T = vg and can be expressed as

T=RB+Rp.+R. (3.15)

The boundary displacements u of a subelement are interpolated in terms of its nodal
displacement g, i.e.,

u=Lg. (3.16)

Substituting (3.14)—(3.16) into (3.12) and enforcing the stationary conditions of the
functional I, with respect to the variations of §, §,, and g yield an “independent” equation

Hp+H.p.+H —~Gg=0 (3.17)

for each subelement since f is independent from subelement to subelement, and the fol-
lowing (coupled) system of equations for all subelements in the crack tip region

Stkg+mp) =S F, (3.18)

Somg+np) =Y Es (3.19)

where
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k=GTH 'G (stiffness matrix of a single subelement) (3.20)
m=G—-HH'G (3.21)
n= H?H*ltls_tlsx (322)

E=Q+F,+F+GH 'H -¢. (3.23)
E=H-HH'H. (3.24)
0= J T7LdS (3.25)
S5,
Fo = —[ Q'LdS (3.26)
s,
£ = j g, LdS (3.27)
S.+S,
LI=J PTCPdV (3.28)
Vn
H = j P'CP.aV (3.29)
Vn
H, = j PICp.dV (3.30)
V'I
H =J g/ CPdV (3.31)
V/l
H, = J g/CP.dV (3.32)
V"
G= f R'LdS (3.33)
av,
g, = j RILdS (3.34)
av,

G, = J RTLdS. (3.35)
v,
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Table 1(a). Stress matrices for a rectangular hybrid element. (Subelement type | in Fig. 2)

(1) g=1{0600,7u} = BB, Br Bo. . Bu} + KB,
where P is as follows:
1 »p 0 0 0 «x 0 ¥y 0 x? Xy 0 xy? DA} Xy x*/3 0
6 0 1 x 0 0 ¥ 6 x? ¥ 0 Xy 0 0 x* p3 xyp? x2y

6 0 0 0 1 —y —x 0 0 —2xp —¥2 —x}Y2 ~3¥/3 0 0 -—-x —xy —x'/3

and P, is given by

1 a I—si 6 . 30 1 .0 74 osB o 39
——cosx | I —sinzsin— — ——=sinz CO8 - COS —
\/Z_rcosz sm2sm 5 \/Esmz 3 3
s psinlan? oinfeosleos?
\/50052 +sm25m 3 \/2_;5 5 3 5
| .0 30 1 0[1 .0 in 30:|
~—=—=C08 3 8N 5COS — —=cosx | 1 —sinzsin—+
\/; 22 2 \/5 2 272
2) IT= {*Tn.w, =048 Tycps o Ocsns Txvans Oxacs TnA('} = ‘g{ﬁhﬂz ----- B]g} +K,,Bs
where R is as follows
[0 0 0 0o -1 0 x 0 0 0 0 X2 0 0 0 0 0 X337
0 0 -1 —x 0 0 0 0 —x? 0 0 0 Q 0 X3 0 0 (]

0o 0 o0 0 1 -b —x 0 0 —2bx b2 —x'2 b3 0 0 —hFx —bx' —Xx3
0 0 1 x 0 0 b 0 x? b 0 bx 0 0 x> B3 bix bx?
1 y 0 0 0 a 0 3 0 a? ay 0 ay? v 0 ady d'j3 0
6 0 0 0 I -y —a 0 0 —2ay —-)y2 —aj2 -3 0 0 —a? -a'y —-a'j3

-1 =y 0 0 0 0 0 =y 0 0 0 ¢ 0 —yt 0 0 0 0

0 0 0 0 -1 3y 0 0 0 0 ¥22 ¢ -3 0 0 0 0 0|

and R, is evaluated from the singular stress term (£,) along the boundary of the element but is omitted from here due to lack of
its representation in a simple form.

Table 1(b). Boundary displacement matrix for a four-node rectangular hybrid element. (Subelement type 1 in Fig. 2)

- R — 1! !
¥ = {@ap: Vass Ueps Peps Waps Vsps Yacs bac) = LG G2 - g}

where L is given by

(1—s'"%) 0 s 0 9 0 0 0
0 (1—s"?%) 0 s'? 0 0 0 0
(] 0 0 0 s 0 (1—9) 0
0 0 0 0 [ 0 (1-39
0 0 1—-1 0 0 0 0
0 0 0 (I-n 0 1 0 0
(1= 0 0 0 0 0 2 0
|l 0 (1—-1'?) 0 0 0 0 0 ]

C is the elastic compliance matrix ; typical matrices for P, P,, R, R, and L are given in
Tables 1 and 2 as discussed in details at the end of this Subsection. Since F, cancels out
with G/ during the assemblage phase, these matrices are not computed for each element
and they can be omitted from the definition for F,. Further, since the two subdomains (the
crack tip region and the outside of the crack tip region) have common nodes along S.., it is
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Table 2(a). Stress matrices for a rectangular hybrid elernent. (Subelement type 1 in Fig. 2)

() g¢= {650,174} = P{B1, B2 B - ., Bro} + K, B,
where P is as follows:
1y x x2 Xy xyt oy Xy x*/3
0 0 0 0 ¥ 0 0 0 yi3 xy?
0 0 —y 0 =2xy —y42 =3 0 —xp! —x%
(2) T={—Tyun — 048 Txycds OycDs Gx0> Txysps Fedes Tepact = Bt B o Bro} + KR,

where R is as follows

[0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 —b 0 —2bx —b*2 b3 0 —b'x  —bx?
0 0 0 0 b* 0 0 0 b3 b*ix
1 ¥ a ¥ a’ ay ay’ y? a’y a*/3
0 0 —y 0 —2ay  —y'2  —y3 0 —ayt =4y
“1 —y 0 - 0 0 ¥ 00 0
o 0 y 0 0 ¥Ry 00 0

Table 2(b). Boundary displacement matrix for a four-node rectangular hybrid element. (Subelement type 2 in Fig. 2)

4 = {tya Vag, Ucps Vo Upps Vaps Hacs UAC} =L{g1.¢ ..., %)

where L is given by

(1—5'? 0 1—(1—s)'7 0 0 0 0 0
0 (1-5'? 0 I—(1—s)'? 0 0 0 0
0 0 0 0 K 0 (1—s3) 0
0 0 0 0 N 0 (1—3)
0 0 (=77 0 17 0 0 0
0 0 (1—-¢'"%) 0 17?2 0 0

(1-1) 0 0 0 0 t 0
0 (t—9 0 0 0 0 0 t

clear that Fj, of the hybrid elements bordering to .S, will cancel out with those from
neighboring regular elements on the other side of S..

It should be emphasized that only eqns (3.18) and (3.19), not (3.16), will enter the
global (structure) equations since eqn (3.16) is independent from subelement to subelement
and is determined after solving for the unknown §, and the nodal displacements. Rewriting
(3.19) as

B= —N'Mg*+N 't (3.36)
and substituting (3.36) into (3.18) for f, results in

K.q* = Ft—MN~'F¥, (3.37)
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Fig. 2. Crack tip element with subelements. The local coordinates and degrees of freedom for a
subelement are also shown.

where

K =K-MN'M. (3.38)
M, N, K, g*, Ff and F¥ are the assemblages of m, n, k, ¢, F|, and F,, respectively, over N
subelements of the elastic crack tip element; K, is the crack tip element stiffness matrix.
Equation (3.37) is the force—displacement matrix relation for the crack tip element and it
can be assembled into the global equations for the whole structure in the usual manner.

In the present analysis, the crack tip element consists of four squared subelements
formulated by (3.12) as shown in Fig. 2. The matrices P, R, and L for subelement type |
are listed in Tables 1(a) and (b). The corresponding matrices for subelement type 2 are in
Tables 2(a) and (b). The assumed stress fields satisfy identically the equilibrium equations.
Further, the assumed stress field in subelement type 2 also fulfills the traction free condition
on the crack surfaces. All four subelements have the common P, and f, where f, are mode
I and mode II stress intensity factors and P, corresponds to the angular functions of the
first two terms of Williams asymptotic series (Williams, 1957).

4. NUMERICAL EXAMPLES

To illustrate the use of the hybrid crack tip element and to examine the accuracy of
the method, two example problems are solved. The first one involves an edge cracked strip
being subjected to a linear temperature variation across its width as shown in Fig. 3. The
temperature equals 7T, at x = W/2 and decreases linearly to — 7, at x = — W/2. This
problem had been analyzed by Wilson and Yu (1979) and Shih es al. (1986). Due to
symmetry, only upper half of the strip is modeled. Different meshes are used for evaluating
the normalized stress intensity factor K,/ [\/raaE T,/(1 —v)}, and the results are summarized
in Table 3. In all analyses, a half crack tip element is used and all regular elements are four-
node isoparametric. From the table, the difference in the normalized K, between the meshes
of 204 and 551 nodes is only 1.6%. The normalized K, based on the mesh of 204 nodes is
found to be less than 9% from the average resuit obtained by Wilson and Yu (1979) with
a mesh of 147 nodes and less than 5% from that obtained by Shih ez a/. (1986) with a mesh
of 273 nodes. Based on this single example, the present method seems to be little more
efficient than the domain integration method proposed by Shih er /. and less efficient than
Wilson and Yu’s method. The latter comparison should not be overlooked since all elements
in Wilson and Yu’s analysis are eight-node elements and thus more expensive. Their result
is reported to be 3% higher than the convergent solution.
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Fig. 3. An edge cracked strip under linear temperature distribution across its width. (a) Geometry.
(b) Finite element mesh of the upper half model.

Table 3. Mesh sensitivities study of the crack tip element approach for

Wilson and Yu problem
Number of nodes Normalized K;
204 0.4638
255 0.4654
300 0.471
551 0.4715

The second problem will be used to compare the present method with the design
sensitivity approach (Lee and Grosse, 1993, 1995). Since all problems considered in these
references are not thermo-elastic, for simplicity, we had selected the problem of an edge
cracked plate under gravity as the second test case (sce Fig. 4). The material properties of
the plate are £ = 10,000 psi, v = 0.3 and the gravity force is 1 1b/in®. The problem is
nonsymmetric because of the loading condition. With the aid of Duhamel-Newmann
Analogy (see e.g. Fung, 1965), this problem had been solved equivalently within the
present context of thermo-elasticity as an edge cracked plate under a temperature field
Y(x,y) = —0.1y with one end fixed while the other end is subjected to a uniform stress of
80 psi. Based on the mesh of 103 nodes, K|, K|; and J are found to be 75.1 psi \/i—;I, 10.5
psi \/E and 0.576 psi-in, respectively. The present result for J is about 3% of that obtained
by Lee and Grosse (1993) with a mesh of 113 nodes and with eight-node isoparametric
elements.

Through the results of the two test cases, we would like to make the following two
remarks. First, the computing efficiency of the present method is possibly the same as those
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Fig. 4. An edge cracked plate under gravity. (a) Geometry. (b) Finite element mesh.

of the existing methods for problems with simple geometries and loading conditions.
Second, since the intensity factors K; and Kj; are obtained directly from the finite element
analysis as part of its solution, the advantage of the method becomes obvious for mixed
mode problem when an extra step must be taken in decomposing the modified J or the
energy release rate into K and Kj,.

5. CONCLUSION

An alternate method for evaluating the stress intensity factors of a thermal crack
problem has been proposed. This method employs a specialized crack tip element, which
gives efficient and accurate results. The crack tip element is compatible with the dis-
placement-based elements so that it can be implemented in most commercial finite element
codes. Since no additionally special data is required beside the usual finite element model
and since a relatively coarser mesh in many cases can be used in the analysis, the method
is quite attractive from the user’s standpoint.

After this work was completed, we learned from one of the reviewers that Benzley
(1974) and Emery et al. (1975, 1977) had developed similar crack tip elements but based
on the assumed displacement approach. Since these singular elements are incompatible
with the isoparametric elements, special transition elements must be used along with the
crack tip element. We would like to acknowledge their work.
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